Nuclear factor κB down-regulates human UDP-glucuronosyltransferase 1A1: a novel mechanism involved in inflammation-associated hyperbilirubinaemia.
نویسندگان
چکیده
Jaundice or hyperbilirubinaemia is a common complication of sepsis. UGT1A1 (UDP-glucuronosyltransferase 1A1) is a critical gene for bilirubin metabolism and irinotecan detoxification. However, the molecular pathogenesis of hyperbilirubinaemia during inflammation needs to be further clarified. Human hepatic UGT1A1 expression was analysed by RT (reverse transcription)-PCR, qRT-PCR (quantitative real-time PCR) and Western blotting in response to LPS (lipopolysaccharide) stimulation. Transcription regulatory elements in the upstream promoter region of the human UGT1A1 gene were determined using EMSA (electrophoretic mobility-shift assay) and ChIP (chromatin immunoprecipitation). The important role of the transcription regulatory element was examined using a luciferase assay, and was determined by qRT-PCR using a transcription factor activation inhibitor. LPS down-regulated the UGT1A1 mRNA expression in human hepatoma cell lines. A newly identified NF-κB (nuclear factor κB)-binding site was located on the upstream promoter region (-725/-716) of the human UGT1A1 gene. LPS-induced NF-κB activation and specific binding to the NF-κB-binding site can suppress human UGT1A1 promoter activity and human UGT1A1 expression. We demonstrated that LPS mediates the suppression of human UGT1A1 expression through specific binding of NF-κB to this newly identified NF-κB-binding site in the upstream promoter of the human UGT1A1 gene. The present study may partly explain the molecular pathogenesis of inflammation-associated hyperbilirubinaemia.
منابع مشابه
Activation of the mouse TATA-less and human TATA-containing UDP-glucuronosyltransferase 1A1 promoters by hepatocyte nuclear factor 1.
UDP-glucuronosyltransferase (UGT) 1A1 (UGT1A1) catalyzes the glucuronidation of bilirubin in liver. Among all UGT isoforms identified to date, it is the only relevant bilirubin-glucuronidating enzyme in human. Because glucuronoconjugation is the major route of bilirubin elimination, any genetic alteration that affects bilirubin glucuronosyltransferase activity may result in a more or less sever...
متن کاملNuclear factor-κB1 expression levels in human gastric adenocarcinoma
NF-κB pathway is a link between inflammation and cancer and is involved in cellular responses to different stimuli. Gastrointestinal lumen is exposed to many inflammatory agents such as foods, free radicals and bacterial or viral antigens. The aim of the present study was to evaluate the possible role of NF-κB1in gastric adenocarcinoma. To detect the relative level of NF-κB1transcript, total RN...
متن کاملShort Communication HEPATOCYTE NUCLEAR FACTOR-1 IS A CAUSAL FACTOR RESPONSIBLE FOR INTERINDIVIDUAL DIFFERENCES IN THE EXPRESSION OF UDP- GLUCURONOSYLTRANSFERASE 2B7 mRNA IN HUMAN LIVERS
UDP-glucuronosyltransferase (UGT) 2B7 is one of the most important UGT isozymes expressed in human livers. This enzyme is reported to show more than 10-fold interindividual differences in its enzyme activities. Thus, the amounts of UGT2B7 mRNA in 12 human livers were quantified by quantitative reverse transcriptionpolymerase chain reaction. The amounts of UGT2B7 mRNA in the subjects ranged from...
متن کاملHistone modifications regulate the developmental expression of human hepatic UGT1A1
Human UDP-glucuronosyltransferase 1A1 (UGT1A1) is a unique enzyme involved in bilirubin conjugation. We previously characterized the hepatic expression of transcription factors affecting UGT1A1 expression during development. Accordingly, in this study, we characterized the ontogenetic expression of hepatic UGT1A1 from the perspective of epigenetic regulation. We observed significant histone-3-l...
متن کاملImpact of fatty acids on human UDP-glucuronosyltransferase 1A1 activity and its expression in neonatal hyperbilirubinemia
While breast milk has been known as a cause of neonatal hyperbilirubinemia, the underlying mechanism of breast milk-induced jaundice has not been clarified. Here, the impact of fatty acids on human UDP-glucuronosyltransferase (UGT) 1A1--the sole enzyme that can metabolize bilirubin--were examined. Oleic acid, linoleic acid, and docosahexaenoic acid (DHA) strongly inhibited UGT1A1 activity. Fort...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 449 3 شماره
صفحات -
تاریخ انتشار 2013